Draxxin : 500ml Rx

ZOETIS SKU: 102376

$1,867.58

Shipping calculated at checkout

*Rx* Federal law restricts this drug to use by or on the order of a licensed veterinarian.

The first-line product-of-choice to treat BRD, offering both superior disease treatment as well as outstanding efficacy for the control of BRD in cattle at high risk of developing the disease.


For Prescription ordering policy & procedure please click on this link: http://livestockconcepts.com/content/22-Prescription-Policy

(tulathromycin)

Antibiotic

100 mg of tulathromycin/mL

For subcutaneous injection in beef and non-lactating dairy cattle and intramuscular injection in swine only. Not for use in female dairy cattle 20 months of age or older or in calves to be processed for veal.

CAUTION

Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

DESCRIPTION

DRAXXIN Injectable Solution is a ready-to-use sterile parenteral preparation containing tulathromycin, a semi-synthetic macrolide antibiotic of the subclass triamilide. Each mL of DRAXXIN contains 100 mg of tulathromycin as the free base in a 50% propylene glycol vehicle, monothioglycerol (5 mg/mL), with citric and hydrochloric acids added to adjust pH.

DRAXXIN consists of an equilibrated mixture of two isomeric forms of tulathromycin in a 9:1 ratio. Structures of the isomers are shown below.

The chemical names of the isomers are (2R,3S,4R,5R,8R,10R,11R,12S,13S,14R)-13-[[2,6- dideoxy-3-C-methyl-3-O-methyl-4-C-[(propylamino)methyl]-α-L-ribo-hexopyrano-syl]oxy]-2-ethyl-3,4,10-trihydroxy-3,5,8,10,12,14-hexamethyl-11-[[3,4,6-trideoxy-3-(dimethylamino)-β-D-xylo-hexopyranosyl]-oxy]-1-oxa-6-azacyclopentadecan-15-one and (2S,3S,6R,8R,9R,10S,11S,12R)-11-[[2,6-dideoxy-3-C-methyl-3-O-methyl-4-C-[(propylamino)methyl]-α-L-ribohexopyrano-syl]oxy]-2-[(1R,2R)-1,2-dihydroxy-1-methylbutyl]-8-hydroxy-3,6,8,10,12-pentamehyl-9-[[3,4,6-trideoxy-3-(dimethylamino)-β-D-xylo-hexopyranosyl]oxy]-1-oxa-4-azacyclotridecan-13-one, respectively.

INDICATIONS

Beef and Non-lactating Dairy Cattle

BRD - DRAXXIN Injectable Solution is indicated for the treatment of bovine respiratory disease (BRD) associated with Mannheimia haemolyticaPasteurella multocidaHistophilus somni, and Mycoplasma bovis; and for the control of respiratory disease in cattle at high risk of developing BRD associated with Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis.

IBK - DRAXXIN Injectable Solution is indicated for the treatment of infectious bovine keratoconjunctivitis (IBK) associated with Moraxella bovis.

Foot Rot - DRAXXIN Injectable Solution is indicated for the treatment of bovine foot rot (interdigital necrobacillosis) associated with Fusobacterium necrophorum and Porphyromonas levii.

Swine

DRAXXIN Injectable Solution is indicated for the treatment of swine respiratory disease (SRD) associated with Actinobacillus pleuropneumoniae, Pasteurella multocida, Bordetella bronchiseptica, Haemophilus parasuis, and Mycoplasma hyopneumoniae.

DOSAGE AND ADMINISTRATION

Cattle

Inject subcutaneously as a single dose in the neck at a dosage of 2.5 mg/kg (1.1 mL/100 lb) body weight (BW). Do not inject more than 10 mL per injection site.

Table 1. DRAXXIN Cattle Dosing Guide

Animal Weight (Pounds)

Dose Volume (mL)

100

1.1

200

2.3

300

3.4

400

4.5

500

5.7

600

6.8

700

8.0

800

9.1

900

10.2

1000

11.4

Swine

Inject intramuscularly as a single dose in the neck at a dosage of 2.5 mg/kg (0.25 mL/22 lb) BW. Do not inject more than 2.5 mL per injection site.

Table 2. DRAXXIN Swine Dosing Guide

Animal Weight (Pounds)

Dose Volume (mL)

15

0.2

30

0.3

50

0.6

70

0.8

90

1.0

110

1.3

130

1.5

150

1.7

170

1.9

190

2.2

210

2.4

230

2.6

250

2.8

270

3.1

290

3.3

CONTRAINDICATIONS

The use of DRAXXIN Injectable Solution is contraindicated in animals previously found to be hypersensitive to the drug.

WARNINGS

FOR USE IN ANIMALS ONLY.

NOT FOR HUMAN USE.

KEEP OUT OF REACH OF CHILDREN.

NOT FOR USE IN CHICKENS OR TURKEYS.

RESIDUE WARNINGS

Cattle

Cattle intended for human consumption must not be slaughtered within 18 days from the last treatment. Do not use in female dairy cattle 20 months of age or older. A withdrawal period has not been established for this product in pre-ruminating calves. Do not use in calves to be processed for veal.

Swine

Swine intended for human consumption must not be slaughtered within 5 days from the last treatment.

PRECAUTIONS

Cattle

The effects of DRAXXIN on bovine reproductive performance, pregnancy, and lactation have not been determined. Subcutaneous injection can cause a transient local tissue reaction that may result in trim loss of edible tissue at slaughter.

Swine

The effects of DRAXXIN on porcine reproductive performance, pregnancy, and lactation have not been determined. Intramuscular injection can cause a transient local tissue reaction that may result in trim loss of edible tissue at slaughter.

ADVERSE REACTIONS

Cattle

In one field study, two calves treated with DRAXXIN at 2.5 mg/kg BW exhibited transient hypersalivation. One of these calves also exhibited transient dyspnea, which may have been related to pneumonia.

Swine

In one field study, one out of 40 pigs treated with DRAXXIN at 2.5 mg/kg BW exhibited mild salivation that resolved in less than four hours.

CLINICAL PHARMACOLOGY

At physiological pH, tulathromycin (a weak base) is approximately 50 times more soluble in hydrophilic than hydrophobic media. This solubility profile is consistent with the extracellular pathogen activity typically associated with the macrolides.1 Markedly higher tulathromycin concentrations are observed in the lungs as compared to the plasma. The extent to which lung concentrations represent free (active) drug was not examined. Therefore, the clinical relevance of these elevated lung concentrations is undetermined.

Although the relationship between tulathromycin and the characteristics of its antimicrobial effects has not been characterized, as a class, macrolides tend to be primarily bacteriostatic, but may be bactericidal against some pathogens.2 They also tend to exhibit concentration independent killing; the rate of bacterial eradication does not change once serum drug concentrations reach 2 to 3 times the minimum inhibitory concentration (MIC) of the targeted pathogen. Under these conditions, the time that serum concentrations remain above the MIC becomes the major determinant of antimicrobial activity. Macrolides also exhibit a post-antibiotic effect (PAE), the duration of which tends to be both drug and pathogen dependent. In general, by increasing the macrolide concentration and the exposure time, the PAE will increase to some maximal duration. Of the two variables, concentration and exposure time, drug concentration tends to be the most powerful determinant of the duration of PAE.

Tulathromycin is eliminated from the body primarily unchanged via biliary excretion.

1 Carbon C. Pharmacodynamics of macrolides, azalides, and streptogramins: effect on extracellular pathogens. Clin Infect Dis 1998;27:28-32.

2 Nightingale CJ. Pharmacokinetics and pharmacodynamics of newer macrolides. Pediatr Infect Dis J 1997;16:438-443.

Cattle

Following subcutaneous administration into the neck of feeder calves at a dosage of 2.5 mg/kg BW, tulathromycin is rapidly and nearly completely absorbed. Peak plasma concentrations generally occur within 15 minutes after dosing and product relative bioavailability exceeds 90%. Total systemic clearance is approximately 170 mL/hr/kg. Tulathromycin distributes extensively into body tissues, as evidenced by volume of distribution values of approximately 11 L/kg in healthy ruminating calves.3 This extensive volume of distribution is largely responsible for the long elimination half-life of this compound [approximately 2.75 days in the plasma (based on quantifiable terminal plasma drug concentrations) versus 8.75 days for total lung concentrations (based on data from healthy animals)]. Linear pharmacokinetics are observed with subcutaneous doses ranging from 1.27 mg/kg BW to 5.0 mg/kg BW. No pharmacokinetic differences are observed in castrated male versus female calves.

3 Clearance and volume estimates are based on intersubject comparisons of 2.5 mg/kg BW administered by either subcutaneous or intravenous injection.

Swine

Following intramuscular administration to feeder pigs at a dosage of 2.5 mg/kg BW, tulathromycin is completely and rapidly absorbed (Tmax ~0.25 hour). Subsequently, the drug rapidly distributes into body tissues, achieving a volume of distribution exceeding 15 L/kg. The free drug is rapidly cleared from the systemic circulation (CLsystemic =187 mL/hr/kg). However, it has a long terminal elimination half-life (60 to 90 hours) owing to its extensive volume of distribution. Although pulmonary tulathromycin concentrations are substantially higher than concentrations observed in the plasma, the clinical significance of these findings is undetermined. There are no gender differences in swine tulathromycin pharmacokinetics.

MICROBIOLOGY

Cattle

Tulathromycin has demonstrated in vitro activity of against Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, and Mycoplasma bovis, four pathogens associated with BRD; for Moraxella bovis associated with IBK; and against Fusobacterium necrophorum and Porphyromonas levii associated with bovine foot rot.

The MICs of tulathromycin against indicated BRD and IBK pathogens were determined using methods recommended by the Clinical and Laboratory Standards Institute (CLSI, M31-A2). The MICs against foot rot pathogens were also determined using methods recommended by the CLSI (M11-A6). All MIC values were determined using the 9:1 isomer ratio of this compound.

BRD - The MICs of tulathromycin were determined for BRD isolates obtained from calves enrolled in therapeutic and at-risk field studies in the U.S. in 1999. In the therapeutic studies, isolates were obtained from pre-treatment nasopharyngeal swabs from all study calves and from lung swabs or lung tissue of saline-treated calves that died. In the at-risk studies, isolates were obtained from nasopharyngeal swabs of saline-treated non-responders and from lung swabs or lung tissue of saline-treated calves that died. The results are shown in Table 3.

IBK - The MICs of tulathromycin were determined for Moraxella bovis isolates obtained from calves enrolled in IBK field studies in the U.S. in 2004. Isolates were obtained from pre-treatment conjunctival swabs of calves with clinical signs of IBK enrolled in the DRAXXIN and saline-treated groups. The results are shown in Table 3.

Foot Rot - The MICs of tulathromycin were determined for Fusobacterium necrophorum and Porphyromonas levii obtained from cattle enrolled in foot rot field studies in the U.S. and Canada in 2007. Isolates were obtained from pretreatment interdigital biopsies and swabs of cattle with clinical signs of foot rot enrolled in the DRAXXIN and saline-treated groups. The results are shown in Table 3.

Table 3. Tulathromycin minimum inhibitory concentration (MIC) values* for indicated pathogens isolated from field studies evaluating BRD in the U.S. and from foot rot field studies in the U.S. and Canada.

Indicated pathogen

Date isolated

No. of isolates

MIC50** (µg/mL)

MIC90** (µg/mL)

MIC range (µg/mL)

Mannheimia haemolytica

1999

642

2

2

0.5 to 64

Pasteurella multocida

1999

221

0.5

1

0.25 to 64

Histophilus somni

1999

36

4

4

1 to 4

Mycoplasma bovis

1999

43

0.125

1

≤0.063 to >64

Moraxella bovis

2004

55

0.5

0.5

0.25 to 1

Fusobacterium necrophorum

2007

116

2

64

≤0.25 to >128

Porphyromonas levii

2007

103

8

128

≤0.25 to >128

* The correlation between in vitro susceptibility data and clinical effectiveness is unknown.

** The lowest MIC to encompass 50% and 90% of the isolates, respectively.

Swine

In vitro activity of tulathromycin has been demonstrated against Actinobacillus pleuropneumoniaePasteurella multocidaBordetella bronchisepticaHaemophilus parasuis, and Mycoplasma hyopneumoniae.

The MICs of tulathromycin against indicated SRD pathogens were determined using methods recommended by the Clinical and Laboratory Standards Institute (M31-A2). All MIC values were determined using the 9:1 isomer ratio of this compound. Isolates were obtained from lung samples from saline-treated pigs and non-treated sentinel pigs enrolled in SRD field studies in the U.S. and Canada between 2000 and 2002. The results are shown in Table 4.

Table 4. Tulathromycin minimum inhibitory concentration (MIC) values* for indicated pathogens isolated from field studies evaluating SRD in the U.S. and Canada.

Indicated pathogen

Date isolated

No. of isolates

MIC50** (µg/mL)

MIC90** (µg/mL)

MIC range (µg/mL)

Actinobacillus pleuropneumoniae

2000-2002

135

16

32

16 to 32

Haemophilus parasuis

2000-2002

31

1

2

0.25 to >64

Pasteurella multocida

2000-2002

55

1

2

0.5 to >64

Bordetella bronchiseptica

2000-2002

42

4

8

2 to 8

* The correlation between in vitro susceptibility data and clinical effectiveness is unknown.

** The lowest MIC to encompass 50% and 90% of the isolates, respectively.

EFFECTIVENESS